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Quantum corrections to the motion of classical charges in high intensity electromagnetic fields
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The motion of classical test particles in the nonlinear electrodynamics described by the Weisskopf effective
Lagrangian is studied. A technique using the introduction of an extra coordinate is exploited to obtain the
equation of motion for a test particle in the nonlinear electromagnetic field. The method has the advantage that
the observed mass and charge appear directly in the equation of motion. Quantum corrections due to vacuum
polarization effects are given for the Lorentz force 1§4®&1063-651X96)07007-9
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I. INTRODUCTION 1 242 [(1 )2 (1 2
L=—"F, Fr+ — | ZF, Fer| +7| SF* F’“’)
One of the few nonperturbative results of quantum elec- 4~ 45m*| | 2"~ 4 #v
trodynamics is the effective electromagnetic field Lagrangian 242
first derived by Weisskopf and Dai] who followed the = Z(E2-B?)+ —[(E?— B2+ 7(E-B)?], (1.5
earlier work of Euler, Kockel, and Heisenbefg—4]. The 2 45m

Weisskopf Lagrangian was later rederived in a different way

by Schwinger5] using the proper time formalism. This La- YT ) i
grangian utilizes an analytic solution of the Dirac equationVhere a=e“/4m=e“/4m~1/137 is the fine-structure con-
for an electron in an external, slowly varying field. The po- stant andm is the rest mass of the electron. For a large field

larization of the vacuum due to electron pairs described byhe Lagrangiari1.4) is highly nonlinear and is the appropri-
this solution is fully taken into account to all orders of the &€ Point of departure to begin a study of nonlinear effects.

external field, but excludes radiative corrections due to vir-FOr Practical fields, however, it is sufficient to use the La-

tual photons. It is a nonperturbative result as far as the exdangian of(1.9 to investigate the lowest order nonlinear
ternal field is concerned. effects arising from quantum corrections.

The Weisskopf effective Lagrangian is a functional of the While the _free field equations rgsulting fro_m these _nonlin—
two field invariants ear Lagrangians have beer_1 studied extgn&[/&]ythe im-
portant problem of the motion of a classical test particle in
. such a field has apparently never been addressed. In particu-
F=3F, F*'=3(B*~E? (1.)  lar, the equation of motion of a test particle in an electro-
magnetic field described bgl.4) or (1.5 has never been
obtained. The purpose of this communication is to derive the
effective equation of motion for a test charge in a field de-
L. scribed by this nonlinear effective Lagrangian. One expects,
G=13 F;Vsz - 1(E-B), (1.2 of course, to obtain the Lorentz force in such an equation of
motion as well as an additional term due to quantum correc-
tions.
where the star denotes the dd&*’= ; e*"“*F ;. It does The primary difficulty in obtaining the equation of motion
not depend on the derivatives Of these inVariantS Wh|Ch ar% that one must be careful that on|y the observed Charge and
assumed to be negligiblgs]. Using the complex quantity mass of the test particle appear in the final result. Clearly
X defined by since vacuum polarization effects are includedlir), to be
consistent they should also be taken into account in the equa-
2_(BLiE)2_ i tion of motion for a test particle. It is not immediately clear
A=(BHE)=2(F-19), 3 how to do this in a gauge invariant fashion within the usual
framework of quantum electrodynamics. In order to avoid
Schwinger5] has written this Lagrangian in the form these renormalization problems and ensure that only the ob-
served mass and charge enter into the equation of motion, a

and

1 o Kaluza-Klein type formulation is given for the nonlinear
L=—F- §7’_2J s 3exp(—m?s) electrodynamics. Since the equation of motion for test par-
0 ticles in a Kaluza-Klein theory is just the geodesic equation,
Re coskiesY) 2 one is able to use the formulation to obtain the equation of
X G —— 11—~ : . i i i .
(e9)°G Imcostesy) 1 3]-" ds (1.9 motion for a test charge in a straightforward method. At the

classical level the equation of motion derived in this manner
from the Kaluza-Klein formalism is known to be identical to

The weak field expansion yields the well known resultthe equation of motion one would obtain from the regular
[7-9] four-space formulation.
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The advantage of the Kaluza-Klein approach is that the ot =dx*, (2.5a
identification of the observed mass and charge is readily ap-
parent, so the equation of motion can be unambiguously de- aP=f"Ydo—-A,dx"), (2.5b

termined. Moreover, it is an interesting problem in its own . ) .
right of finding a Kaluza-Klein type theory that will yield the SO that the metri¢2.1) can be written in the form
Lagrangian of Eq.(1.5. Theories with extra dimensions

have a long history10,11] but have in recent years attracted dS?= nago’o®, (2.6
renewed interedtl2]. It is an interesting problem from the with
standpoint of these theories to see how quantum and nonlin-
ear corrections can be incorporated into a simplified Kaluza- Nuw O
Klein model. 7A8=| _1} 2.7
In Sec. Il the relevant features of the Kaluza-Klein theory
with a single extra dimension are summarized. This is fol-.
lowed in Sec. lll by a description of how this can be used to From (2.5) one readily calculates
obtain a Kaluza-Klein type formulation for the nonlinear
electrodynamics described by the Weisskopf Lagrangian. In do#=0 (2.89
Sec. IV this formulation is used to find the equations of 5 1 5 .1 ,
motion for a classical test particle in this theory. Section V do>=—f""%, ,o*No>— 1" 7F ,,o"/N\a", (2.8D
contains concluding remarks. where
Il. FLAT KALUZA-KLEIN THEORY FW=A,,,#—A# vy (2.9

As a preliminary which will also serve to introduce the  Now by the Cartan structural equation
notation, the pertinent aspects of the Kaluza-Klein theory
will be summarized. It is sufficient for the purposes here to do”=0BAQ3, (2.10
consider only the flafno gravity Kaluza-Klein type theory
given by a metric of the form

dS?=p,,dxtdx’—f~H(d6—A,dx")?, (2.2 Qps=7acQ5, Qas=—0pa (2.1

one can obtain the connection one—fomﬁ by (2.10 and

MY 1 . -
whereA ,(x*) is the usual electromagnetic four-vector poten (2.8). Doing this one easily finds

tial andf(x*) is a scalar field to be specified later. The extra
coordinate,f, is assumed compactified and normalized so
that 0<60<27. It is convenient to introduce the notation
xO=t,xt=x,x’=y,x3=2z,x°= ¢ and write(2.1) in the form

Qb=— 3 VFLo5, (2.123

=31, 0531 VF 0" (2129

dS?=gagdx dx5, 2.2
Gas @32 Since()4 is a one form, it can be expanded on W basis

where as
Nuv— fﬁlA,uAv fﬁlA,u Qé: ngUC' (2.13

9as= F-1p (2.3

—f71) where y5 are the connection coefficients on the orthonor-
mal basis. Comparing2.13 and (2.12 allows one to read
The summation convention is used throughout with uppenoff

case latin indiced\,B, etc., running over the five dimensions

14

0,1,2,3,5; lower case Greek indicgsv, etc., range over the Yva=0, (2.143
usual four-space values 0,1,2,3; and lower case latin indices
i,j, etc. run over the physical space dimensions 1,2,3. The Yro= vyl =— 5 f-VEL (2.14bh
Minkowski space metrig,,, is diagonal with signaturé+1,
—1, —1, —1) and natural unité =c=1 are used. yfwz — %f—1/2|:w, (2.149
In the absence of additional fields, the field equations fol-
low from the Kaluza-Klein type action 7;5L5: _ %f—lf,w (2.149
1
Ap=— zqflf Rx|detgap)|*%dx, (2.9 Yhs=— 3 1A (2.14¢

) ] _ ) ~ The Riemann curvature tensa‘QCD can then be obtained
where R is the five-dimensional curvature scalar resultlngdirecﬂy from the curvature form by using

from the metricgag of (2.3). The curvature scalar is most
easily calculated using the Cartan formalism. The details of dQs+ QO EAQ =3 R5cpo/\aP. (2.15
this calculation are outlined below.

One introduces the basis of one-forms Using (2.10), (2.12), and(2.13 in Eqg. (2.15 one obtains
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RSCD: ?’QD e YQC-DJF 7@5750 _ It is clear fr_om this_Lagrangian thatffis taken to be an
A e A e A independent field variable and varied independentlyAof
—YBeYbcT YEcYep— YEpYec (216 then (2.24 with the principle of stationary action leads to

for the Ri wre t in t ¢ th i singular results. To have a consistent formulation one must
or the Riemann curvature tensor in terms of the connectio ; ; ;
'then requiref to be a functional ofA,, . Futhermore, since

coefficients on the orthonormal basis. The curvature scalar igne would like to maintain the gauge invariance one expects

then given by f to be a functional of the two invariant& and g, i.e.,
R=RE= 78Ry, 21y [=HA9.
where I1l. KALUZA-KLEIN FORMULATION
A FOR THE WEISSKOPF LAGRANGIAN
Rep=Rgap- (2.18 . . S .
Using the results of the preceding section it is possible to
From these one uses Eq2.14) to calculate give a Kaluza-Klein type formulation for the nonlinear elec-

trodynamics described by the Weisskopf effective Lagrang-

R, =3(f",,),, —if %, f,—3f'F,F2 (2193 ian. In particular, if one choosdsin the form

_ _ 1l g-12zay  _ 1g-3/2 o en)\? 1 o
Rus == 3 (I3, 3170 @290 oo r_o [ngzflf s Sexp(—ms)
0 0
Res=— 3 (f71f9),,— 3 f262f, .+ 2 FIF 5F*F (2.19
and (es) glmcosr(eos)c) 3(es) s
R=(f711),,— 5 £7202F, + § f1F ,F*A. (2.20 (3.1)
Now the action(2.4) can be written as then the Kaluza-Klein metric
1 3 2 __ M v__§—1 _ v\ 2
AF:‘EJ (—Efzf'“f,ﬁflf'“,a dS?= 5, dx“dx’—f~H(d6—A,dx") 3.2
leads to the Weisskopf Lagrangian density
1
+ Zf_lFaBF“ﬁ> f~ 1245, (2.21) 1 .
L=—F- §7T_2J s 3exp(—m?s)
where the fact that 0
_ Re coslies¥) 1
de =f1 2.2 2 ZEPNEY 4 Zleq)?
(9das) (2.22 x| (e9) glmcosi{ex)k) 1-(e9?F|ds.
which follows by direct computation fron(2.3) has been 3.3
used. Simplifying(2.21) one arrives finally at
1 To obtain the weak field limit Lagrangiaii.5), one uses
Ap=— o [(f—3/2f’a)'a+ Ef—3/2|:aﬁ|:013 d5x, the Kaluza-Klein metrid3.2) with f taken to be
r
223 (e[, 4a® E-Br7EBR)
1(ep|? 312 o 45m? E2—B2
=— | == f aBy4
J’4(ro) f7F  gF *PdX, (2.249 (3.4

where the divergence term has been dropped and the integréhe nonlinear field equations then follow from the Euler-
tion over  has been performed assuming compactificatio.agrange equations in the usual way.

with a characteristic charge-mass ratioegfm, or, equiva- This shows that it is possible to give a Kaluza-Klein type
lently, a compactified fifth dimension with radius formulation for the nonlinear electrodynamics of the
ro=e€3/mg. Weisskopf effective Lagrangian. In fact, any nonlinear elec-

This shows that the Kaluza-Klein metrig.1) is equiva- trodynamics could be placed in the Kaluza-Klein frame work
lent to the field theory represented by the acti@r24 or its  in this fashion. While it has been known for some time that
corresponding Lagrangian every theory which is generally covariant and gauge invari-
ant can be expressed in Kaluza-Klein fofirl, 12, this does
not seem to have ever been explicitly done for any cases
other than linear electrodynamics and its non-Abelian gauge
theory extensions. The results of this section should also be
It should be noted that these results are applicable in arbif interest in their own right because they show the effect of
trary fields and, in particular, do not rely on a weak field orquantum corrections on the five-dimensional metric in a sim-
slowly varying field approximation. plified Kaluza-Klein model.

1/eg\®
L=-7 ﬁ) f=32F  JF B, (2.25
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IV. MOTION OF PARTICLES IN NONLINEAR d
ELECTRODYNAMICS DESCRIBED —
BY AN EFFECTIVE LAGRANGIAN dt

Mov

\/1 v ——(0 Ag+A-v)?

It is possible to use the Kaluza-Klein formalism to derive

the equation of motion for a test particle in the nonlinear =e(|§+5>< B)

electromagnetic field described by the Weisskopf Lagrang-

ian. The method of calculation is straightforward since the e? \/ : 2 e,

motion of test particles in Kaluza-Klein theory is along geo-  ~ 5 1-v? 7 (9_A0+A'U) Vi. (4.7)

desics of the five-dimensional metric, which extremize the

arc length. For a particle of rest masg this is equivalentto  From (4.4) it can be shown that
finding the equations of motion that follow from the particle

action 1

o1 —
1-v?= —(6—Ag+A-v)?
Ap=—mof ds. @.) \/ o= (0= AgtA-v)

with y=(1-v%) Y2, so that(4.7) can be written as

2
=(1+—
Mg

112
v (4.8

Using (3.2) this can be written as

d . N
—(myv)=e(E+vXB)— —Vf, (4.9
Apz—moJ (7, dx"dx"— £~ H(do— A, dx")2) M2 dt 2my
where
— c2_f-1¢y Y
——mof Vi-0p2—f (6—Agt+A-v)ddt, (4.2 mzm 4.10

is interpreted in the Kaluza-Klein theory as the renormalized
mass of the test particle.
From (4.9 one can easily obtain the covariant equation of
motion

wheref is given by(3.3) andv =dx/dt is the usual velocity
vector. The time rate of change of the fifth component of the
particle’s position isg=do/dt.

The particle motion is thus described by the Lagrangian
2

d e
JR— = mv — M
dT(mu") eF* u,+ me , (4.11)

L=—m0\/1 v ——(0 Ag+A-v)2. 4.3
which upon using4.10 can be written as
The canonical momenta resulting fro@h.3) are then

d
) o d—T(mu“):eF””quLm'“ (4.12
L mef TH-AgtA-v)
Q=5~ 1. - (44 \vhere 7 is the usual proper time and“= dx“/dr is the
\/l—vz— ?(0—A0+A- v)? usual four velocity. It is important to note that the derivation
of these equations of motion is applicable in arbitrary fields
and and, in particular, does not rely on a weak field or slowly
varying field approximation.
il - For the case of weak fieldsis given by(3.4) and in this
> mov N H H
P— (9_52 \/1 — 1QA (45 case the equation of motidd.12 becomes
v ( otA-v) s V (E2—B2)2+ 7(E.B)?
m e ==
So that Lagrange’s equations lead to the equations of mouordt( v)=e(E+vxB) 13Em3 2(E2-B?)
4.13
dQ : . . . .
Hzo, (4.63 for slowly moving particles. It is informative to consider
(4.13 for the case wher&-B vanishes so that4.13 re-
N duces to
aP_ V(—Ag+A-v
E_Q (=AotA-v) d EtoxB) s 0% 8a? ﬁ 36 eoéz—soczéz
i (M) =e(EFvxB)+ 755 2 )
\/1 02— fL(6—Ag+A-0)2 VI (4.6 (4.14

2mg
where we have restored the constaitandc and expressed
The first of these shows tha@=e=const which in the fields in rationalized mks units.
Kaluza-Klein theory is taken to be the observed charge of the The equation of motiof4.14) shows the quantum correc-
test particle. Usind4.5) the second equation becomes tions to the motion of a classical test particle. It is obvious
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that the first term corresponds to the Lorentz force and theections in the Lorentz force law. The method used to obtain
second arises due to nonlinear quantum effects resultinthe equation of motion is somewhat unusual in that an extra
from vacuum polarization. The effect of the additional termdimension is introduced and an equivalent Kaluza-Klein for-
is a weak diffusion-type force on the particle pulling it into mulation is given for the electrodynamics described by the
regions with high energy density. Because of its presencepyeisskopf Lagrangian. The equation of motion is then ob-
the motion of charged particles will be correspondinglytained as the geodesic equation in this higher dimensional
modified in intense electromagnetic fields. space time. This Kaluza-Klein formulation should be of in-
To obtain an estimate of the magnitude of the additionaterest in itself because it shows how to incorporate quantum
term, we compare it to the Lorentz force for an electron in acorrections into the Kaluza-Klein scheme. The theory re-
hydrogen atom ground state orbital. Neglecting the magnetiduces to the original Kaluza-Klein formalism for classical
field, the electric field of the proton provides the externalelectrodynamics in the limit— 1.
field and the ratio of the diffusive force on the orbital elec- The technique of introducing an extra coordinate is not
tron to the Coulomb force of the nucleus on the orbital elec-specific to the system studied here and could be used to find
tron is the equation of motion for test particles in any gauge invari-
) 3 ant nonlinear electrodynamics. It should also be possible to
BL(i) EE use the same technique in obtaining quantum corrections to
Fq 135\mc/ “°"or 8a?[ % \3eq dE non-Abelian gauge theories by introducing more than five
F_e: eE ~135!mc/ e ar’ 4139 " gimensions. An interesting extension of the results here
would be to find the effective equation of motion for a Dirac
particle in the nonlinear electromagnetic field described by
the Weisskopf Lagrangian. This could be done by formulat-
ing a Dirac equation for the space described by the five-

, i 1 e |
which for the Coulomb fielde= Tmeg 12 yields

Fe 8a? [ h\31 13 dimensional metri¢3.2). The resulting quantum mechanical
F. 2707\mc a_gmlo (4.16 theory should give some insight into vacuum polarization
effects on the evolution of a quantum system. Further inves-
atr=a,, the first Bohr radius. tigations along these lines are currently under way.
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