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The motion of classical test particles in the nonlinear electrodynamics described by the Weisskopf effective
Lagrangian is studied. A technique using the introduction of an extra coordinate is exploited to obtain the
equation of motion for a test particle in the nonlinear electromagnetic field. The method has the advantage that
the observed mass and charge appear directly in the equation of motion. Quantum corrections due to vacuum
polarization effects are given for the Lorentz force law.@S1063-651X~96!07007-9#

PACS number~s!: 41.20.2q, 12.20.2m, 03.50.De, 11.10.Lm

I. INTRODUCTION

One of the few nonperturbative results of quantum elec-
trodynamics is the effective electromagnetic field Lagrangian
first derived by Weisskopf and Dan@1# who followed the
earlier work of Euler, Kockel, and Heisenberg@2–4#. The
Weisskopf Lagrangian was later rederived in a different way
by Schwinger@5# using the proper time formalism. This La-
grangian utilizes an analytic solution of the Dirac equation
for an electron in an external, slowly varying field. The po-
larization of the vacuum due to electron pairs described by
this solution is fully taken into account to all orders of the
external field, but excludes radiative corrections due to vir-
tual photons. It is a nonperturbative result as far as the ex-
ternal field is concerned.

The Weisskopf effective Lagrangian is a functional of the
two field invariants
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not depend on the derivatives of these invariants which are
assumed to be negligible@6#. Using the complex quantity
X defined by
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Schwinger@5# has written this Lagrangian in the form
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The weak field expansion yields the well known result
@7–9#
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where a5e2/4p5e2/4p'1/137 is the fine-structure con-
stant andm is the rest mass of the electron. For a large field
the Lagrangian~1.4! is highly nonlinear and is the appropri-
ate point of departure to begin a study of nonlinear effects.
For practical fields, however, it is sufficient to use the La-
grangian of~1.5! to investigate the lowest order nonlinear
effects arising from quantum corrections.

While the free field equations resulting from these nonlin-
ear Lagrangians have been studied extensively@8#, the im-
portant problem of the motion of a classical test particle in
such a field has apparently never been addressed. In particu-
lar, the equation of motion of a test particle in an electro-
magnetic field described by~1.4! or ~1.5! has never been
obtained. The purpose of this communication is to derive the
effective equation of motion for a test charge in a field de-
scribed by this nonlinear effective Lagrangian. One expects,
of course, to obtain the Lorentz force in such an equation of
motion as well as an additional term due to quantum correc-
tions.

The primary difficulty in obtaining the equation of motion
is that one must be careful that only the observed charge and
mass of the test particle appear in the final result. Clearly
since vacuum polarization effects are included in~1.4!, to be
consistent they should also be taken into account in the equa-
tion of motion for a test particle. It is not immediately clear
how to do this in a gauge invariant fashion within the usual
framework of quantum electrodynamics. In order to avoid
these renormalization problems and ensure that only the ob-
served mass and charge enter into the equation of motion, a
Kaluza-Klein type formulation is given for the nonlinear
electrodynamics. Since the equation of motion for test par-
ticles in a Kaluza-Klein theory is just the geodesic equation,
one is able to use the formulation to obtain the equation of
motion for a test charge in a straightforward method. At the
classical level the equation of motion derived in this manner
from the Kaluza-Klein formalism is known to be identical to
the equation of motion one would obtain from the regular
four-space formulation.
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The advantage of the Kaluza-Klein approach is that the
identification of the observed mass and charge is readily ap-
parent, so the equation of motion can be unambiguously de-
termined. Moreover, it is an interesting problem in its own
right of finding a Kaluza-Klein type theory that will yield the
Lagrangian of Eq.~1.5!. Theories with extra dimensions
have a long history@10,11# but have in recent years attracted
renewed interest@12#. It is an interesting problem from the
standpoint of these theories to see how quantum and nonlin-
ear corrections can be incorporated into a simplified Kaluza-
Klein model.

In Sec. II the relevant features of the Kaluza-Klein theory
with a single extra dimension are summarized. This is fol-
lowed in Sec. III by a description of how this can be used to
obtain a Kaluza-Klein type formulation for the nonlinear
electrodynamics described by the Weisskopf Lagrangian. In
Sec. IV this formulation is used to find the equations of
motion for a classical test particle in this theory. Section V
contains concluding remarks.

II. FLAT KALUZA-KLEIN THEORY

As a preliminary which will also serve to introduce the
notation, the pertinent aspects of the Kaluza-Klein theory
will be summarized. It is sufficient for the purposes here to
consider only the flat~no gravity! Kaluza-Klein type theory
given by a metric of the form

dS25hmndx
mdxn2 f21~du2Andx

n!2, ~2.1!

whereAn(x
m) is the usual electromagnetic four-vector poten-

tial and f (xm) is a scalar field to be specified later. The extra
coordinate,u, is assumed compactified and normalized so
that 0<u,2p. It is convenient to introduce the notation
x05t,x15x,x25y,x35z,x55u and write~2.1! in the form

dS25gABdx
AdxB, ~2.2!

where

gAB5Fhmn2 f21AmAn f21Am

f21An 2 f21 G . ~2.3!

The summation convention is used throughout with upper
case latin indicesA,B, etc., running over the five dimensions
0,1,2,3,5; lower case Greek indicesm,n, etc., range over the
usual four-space values 0,1,2,3; and lower case latin indices
i , j , etc. run over the physical space dimensions 1,2,3. The
Minkowski space metrichmn is diagonal with signature~11,
21, 21, 21! and natural units\5c51 are used.

In the absence of additional fields, the field equations fol-
low from the Kaluza-Klein type action
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whereR is the five-dimensional curvature scalar resulting
from the metricgAB of ~2.3!. The curvature scalar is most
easily calculated using the Cartan formalism. The details of
this calculation are outlined below.

One introduces the basis of one-forms

sm5dxm, ~2.5a!
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n!, ~2.5b!

so that the metric~2.1! can be written in the form
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.
From ~2.5! one readily calculates
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Now by the Cartan structural equation
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with
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one can obtain the connection one-formVB
A by ~2.10! and

~2.8!. Doing this one easily finds
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SinceVB
A is a one form, it can be expanded on thesA basis

as
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wheregBC
A are the connection coefficients on the orthonor-

mal basis. Comparing~2.13! and ~2.12! allows one to read
off
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The Riemann curvature tensorRBCD
A can then be obtained

directly from the curvature form by using

dVB
A1VAE`VEB5 1

2 RBCD
A sC`sD. ~2.15!

Using ~2.10!, ~2.12!, and~2.13! in Eq. ~2.15! one obtains
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for the Riemann curvature tensor in terms of the connection
coefficients on the orthonormal basis. The curvature scalar is
then given by

R5RB
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where
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From these one uses Eqs.~2.14! to calculate

Rmn5 1
2 ~ f21f ,m!,n2 1

4 f
22f ,m f ,n2 1

2 f
21FmaFn

a , ~2.19a!

Rm552 1
2 ~ f21/2Fm

a !,a2 1
2 f

23/2Fma f
,a, ~2.19b!

R5552 1
2 ~ f21f ,a!,a2 1

2 f
22f ,a f ,a1 1

4 f
21FabF

ab ~2.19c!

and

R5~ f21f ,a!,a2 1
2 f

22f ,a f ,a1 1
4 f

21FabF
ab. ~2.20!

Now the action~2.4! can be written as
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where the fact that

det~gAB!5 f21 ~2.22!

which follows by direct computation from~2.3! has been
used. Simplifying~2.21! one arrives finally at
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2
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52E 1
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3
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where the divergence term has been dropped and the integra-
tion over u has been performed assuming compactification
with a characteristic charge-mass ratio ofe0 /m0 or, equiva-
lently, a compactified fifth dimension with radius
r 05e0

2/m0 .
This shows that the Kaluza-Klein metric~2.1! is equiva-

lent to the field theory represented by the action~2.24! or its
corresponding Lagrangian

L52
1

4 S e0r 0D
3

f23/2FabF
ab. ~2.25!

It should be noted that these results are applicable in arbi-
trary fields and, in particular, do not rely on a weak field or
slowly varying field approximation.

It is clear from this Lagrangian that iff is taken to be an
independent field variable and varied independently ofAm
then ~2.24! with the principle of stationary action leads to
singular results. To have a consistent formulation one must
then requiref to be a functional ofAm . Futhermore, since
one would like to maintain the gauge invariance one expects
f to be a functional of the two invariantsF and G, i.e.,
f5 f (F,G).

III. KALUZA-KLEIN FORMULATION
FOR THE WEISSKOPF LAGRANGIAN

Using the results of the preceding section it is possible to
give a Kaluza-Klein type formulation for the nonlinear elec-
trodynamics described by the Weisskopf effective Lagrang-
ian. In particular, if one choosesf in the form

f ~F,G!5S e0r 0D
2H 11
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then the Kaluza-Klein metric

dS25hmndx
mdxn2 f21~du2Andx
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leads to the Weisskopf Lagrangian density
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To obtain the weak field limit Lagrangian~1.5!, one uses
the Kaluza-Klein metric~3.2! with f taken to be

f5S e0r 0D
2S 11

4a2

45m2

~EW 22BW 2!217~EW •BW !2

EW 22BW 2 D 22/3

.

~3.4!

The nonlinear field equations then follow from the Euler-
Lagrange equations in the usual way.

This shows that it is possible to give a Kaluza-Klein type
formulation for the nonlinear electrodynamics of the
Weisskopf effective Lagrangian. In fact, any nonlinear elec-
trodynamics could be placed in the Kaluza-Klein frame work
in this fashion. While it has been known for some time that
every theory which is generally covariant and gauge invari-
ant can be expressed in Kaluza-Klein form@11,12#, this does
not seem to have ever been explicitly done for any cases
other than linear electrodynamics and its non-Abelian gauge
theory extensions. The results of this section should also be
of interest in their own right because they show the effect of
quantum corrections on the five-dimensional metric in a sim-
plified Kaluza-Klein model.
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IV. MOTION OF PARTICLES IN NONLINEAR
ELECTRODYNAMICS DESCRIBED
BY AN EFFECTIVE LAGRANGIAN

It is possible to use the Kaluza-Klein formalism to derive
the equation of motion for a test particle in the nonlinear
electromagnetic field described by the Weisskopf Lagrang-
ian. The method of calculation is straightforward since the
motion of test particles in Kaluza-Klein theory is along geo-
desics of the five-dimensional metric, which extremize the
arc length. For a particle of rest massm0 this is equivalent to
finding the equations of motion that follow from the particle
action

Ap52m0E dS. ~4.1!

Using ~3.2! this can be written as

Ap52m0E „hmndx
mdxn2 f21~du2Andx

n!2…1/2

52m0E A12vW 22 f21~ u̇2A01AW •vW !2dt, ~4.2!

wheref is given by~3.3! andvW 5dxW /dt is the usual velocity
vector. The time rate of change of the fifth component of the
particle’s position isu̇5du/dt.

The particle motion is thus described by the Lagrangian

L52m0A12vW 22
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f
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The canonical momenta resulting from~4.3! are then
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and
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So that Lagrange’s equations lead to the equations of motion
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The first of these shows thatQ[e5const which in
Kaluza-Klein theory is taken to be the observed charge of the
test particle. Using~4.5! the second equation becomes

d
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From ~4.4! it can be shown that
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with g5(12vW 2)21/2 , so that~4.7! can be written as

d
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e2

2mg
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where

m[Am0
21e2f ~4.10!

is interpreted in the Kaluza-Klein theory as the renormalized
mass of the test particle.

From ~4.9! one can easily obtain the covariant equation of
motion

d

dt
~mum!5eFmnun1

e2

2m
f ,m, ~4.11!

which upon using~4.10! can be written as

d

dt
~mum!5eFmnun1m,m ~4.12!

where t is the usual proper time andum5 dxm/dt is the
usual four velocity. It is important to note that the derivation
of these equations of motion is applicable in arbitrary fields
and, in particular, does not rely on a weak field or slowly
varying field approximation.

For the case of weak fieldsf is given by~3.4! and in this
case the equation of motion~4.12! becomes

d

dt
~mvW !5e~EW 1vW 3BW !1

8a2
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2~EW 22BW 2!
G
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for slowly moving particles. It is informative to consider
~4.13! for the case whereEW •BW vanishes so that~4.13! re-
duces to

d
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~mvW !5e~EW 1vW 3BW !1

8a2
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S \

mc
D 3¹W S «0EW

22«0c
2BW 2

2
D ,

~4.14!

where we have restored the constants\ andc and expressed
the fields in rationalized mks units.

The equation of motion~4.14! shows the quantum correc-
tions to the motion of a classical test particle. It is obvious
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that the first term corresponds to the Lorentz force and the
second arises due to nonlinear quantum effects resulting
from vacuum polarization. The effect of the additional term
is a weak diffusion-type force on the particle pulling it into
regions with high energy density. Because of its presence,
the motion of charged particles will be correspondingly
modified in intense electromagnetic fields.

To obtain an estimate of the magnitude of the additional
term, we compare it to the Lorentz force for an electron in a
hydrogen atom ground state orbital. Neglecting the magnetic
field, the electric field of the proton provides the external
field and the ratio of the diffusive force on the orbital elec-
tron to the Coulomb force of the nucleus on the orbital elec-
tron is

Fd
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5

8a2

135S \

mcD
3

«0E
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e
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which for the Coulomb fieldE5
1

4p«0

e

r 2
yields

Fd
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5

8a2

270p S \

mcD
3 1

a0
3'10213 ~4.16!

at r5a0 , the first Bohr radius.

V. CONCLUSIONS

The principal result of this paper is the derivation of the
equation of motion for a test particle in the nonlinear elec-
tromagnetic field described by the Weisskopf Lagrangian.
Vacuum polarization effects are seen to lead to quantum cor-

rections in the Lorentz force law. The method used to obtain
the equation of motion is somewhat unusual in that an extra
dimension is introduced and an equivalent Kaluza-Klein for-
mulation is given for the electrodynamics described by the
Weisskopf Lagrangian. The equation of motion is then ob-
tained as the geodesic equation in this higher dimensional
space time. This Kaluza-Klein formulation should be of in-
terest in itself because it shows how to incorporate quantum
corrections into the Kaluza-Klein scheme. The theory re-
duces to the original Kaluza-Klein formalism for classical
electrodynamics in the limitf→1.

The technique of introducing an extra coordinate is not
specific to the system studied here and could be used to find
the equation of motion for test particles in any gauge invari-
ant nonlinear electrodynamics. It should also be possible to
use the same technique in obtaining quantum corrections to
non-Abelian gauge theories by introducing more than five
dimensions. An interesting extension of the results here
would be to find the effective equation of motion for a Dirac
particle in the nonlinear electromagnetic field described by
the Weisskopf Lagrangian. This could be done by formulat-
ing a Dirac equation for the space described by the five-
dimensional metric~3.2!. The resulting quantum mechanical
theory should give some insight into vacuum polarization
effects on the evolution of a quantum system. Further inves-
tigations along these lines are currently under way.
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